(1) The farmer has 17 chickens and rabbits.

There are 52 legs altogether.
How many chickens does the farmer have?
How many rabbits does the farmer have?
Method 7: Make a Table

No. of chicken	No. of legs	No. of rabbits	No. of legs	Total no. of legs

The farmer has \qquad chickens and \qquad rabbits.

Method 2: Solving by Assuming
Step 1
If all were chickens,
— X \qquad $=$
\qquad - \qquad = \qquad
There will be a shortage of \qquad legs as some rabbits are counted as chickens.

Step 2
The difference in the number of legs between a chicken and a rabbit is \qquad .

Step 3

\div \qquad $=$ \qquad rabbits
\qquad - \qquad $=$ \qquad chickens
scan for a Free online class
So, the farmer has \qquad rabbits and \qquad chickens.

2 A truck has 6 wheels.
A car has 4 wheels.
14 trucks and cars parked in a car park have a total of 72 wheels.
How many trucks are there?
How many cars are there?

Method 7: Make a Table

No. of trucks	No. of wheels	No. of cars	No. of wheels	Total number of wheels

There are \qquad trucks \qquad cars.

Method 2: Solving by Assuming
scan for a Free online class
DTME Pry

"Spark

The Fun and Efficient Way to Academic Success
Math smarter through fun, interactive \& results-driven math adventures!

3 Casey paid $\$ 16$ in all for 11 two－dollar and one－dollar stamps．
How many two－dollar stamps did he buy？
How many one－dollar stamps did he buy？

4 Abby puts 84 marbles into 10 big and small boxes．
A big box can hold 12 marbles．
A small box can hold 6 marbles．
How many big boxes are there？
How many small boxes are there？

5 A science fiction book cost $\$ 5$ ．
A comic book cost \＄3．
Benny paid $\$ 26$ in all for 6 books．
How many science fiction books did he buy？
How many comic books did he buy？
scan for a Free online class

＂＇Spark

Q：
（：
$\rightarrow+4$

